Low Profile Slide Table

MXF Series

ø8, ø12, ø16, ø20

Low-profile and compact type, air slide table with the construction of guide and cylinder aligned in parallel.

Low-profile and compactness have been achieved with the construction of guide and cylinder aligned in parallel.

Model	Height x Width (mm)	Height comparison to MXS
MXF8	16 x 58	67%
MXF12	18.5 x 68	59%
MXF16	21 x 80	53%
MXF20	27 x 92	54%

Auto switch is mountable

groove to save space.

Auto switch is recessed in the

Neat appearance

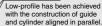
Protecting stopper section with cover realizes neat appearance.

Standard adjustment Stroke can be adjusted at each stroke end within 5 mm each end and 10 mm

is total. 0 6

Reproducibility for mounting and dismounting

Positioning pin holes on table top allows precise and easy mounting to change workpiece.


войу тойн	инд (войу гар	spea)
	0	

High rigidity

Cross roller guide allows smooth

operation without vibration.

Slim body

2 directions is possible.

Optional porting

Lateral and axial piping from

Reproducibility for mounting and dismounting

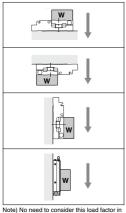
Pin holes for positioning on bottom of slide allows precise and accurate mounting of actuator.

Body mounting (Body tapped)

Mounting can be done from 2 directions top side (through-hole) and bottom side (body tapped).

1. Body tapped	2. Body through-hole

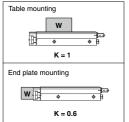
Series Variations


001100 10			
Model	Bore size (mm)	Stroke (mm)	Auto switch
		10 20 30 50 75 100	Reed auto switch
MXF8	8	+ + +	D-A9□, D-A9□V Solid state auto switch
MXF12	12		D-M9D, D-M9DV
MXF16	16		2-color indicator solid state auto switch
MXF20	20		D-M9⊡W, D-M9⊡WV
			L

MXF Series Model Selection

Operating Conditions		
Enumerate the operating conditions considering the mounting position and workpiece configuration. Check that the load weight does not exceed the maximum allowable load weight and that the average operating speed does not exceed the operating speed range. Kinetic Energy	Model to be used 'Type of cushion Workpiece mounting position Mounting orientation Average operating speed Va (mm/s) Load mass W (kg): [dg.(1) - [dblc(2)] Overhang Ln (mm): [dg.(2)]	Cylinder: MXF20-50 Cushion: Rubber bumper Workpiece table mounting Mounting: Horizontal wall mountin Average operating speed: Va = 300 [mm/s] Allowable load: W = 0.5 [kg Li = 10 mm Li = 30 mm Li = 30 mm
Find the kinetic energy E (J) of the load. Find the allowable kinetic energy Ea (J). Confirm that the kinetic energy of the load does not exceed the allowable kinetic energy.	E = $\frac{1}{2} \cdot W \left(\frac{V}{1000} \right)^2$ Collision speed V = $\underline{1.4}_+$ Va •) Correction factor Ea = K-Emax (Reference values) Workpiece mounting coefficient K: [JDK(3)] Max. allowable kinetic energy Emax: [B30(3)] Kinetic energy (E) ≤ Allowable kinetic energy (Ea)	$E = \frac{1}{2} \cdot 0.5 \left(\frac{420}{1000} \right)^2 = 0.044$ V = 1.4 × 300 = 420 Ea = 1 \cdot 0.16 = 0.16 Can be used based on E = 0.044 \leq Ea = 0.16
Load Factor		
Load factor of load mass		
Find the allowable load mass Wa (kg). Note) No need to consider this load factor in the case of using perpendicularly in a vertical position. (Define $C_{11} = 0.$) Find the load factor of the load mass $C_{1.}$	Wa = K $\cdot\beta$ ·Wmax Workpiece mounting coefficient K: Fig.(3) Allowable load mass coefficient β : Graph (1) Max. allowable load mass Wmax; Table (2) $\Omega_1 = W/Wa$	$\label{eq:main_state} \begin{array}{l} \textbf{Wa} = 1 \times 1 \times 4 = 4 \\ \textbf{K} = 1 \\ \beta = 1 \\ \textbf{Wmax} = 4 \\ \textbf{C}_{11} = \textbf{0.5}/4 = \textbf{0.125} \end{array}$
Load factor of the static mo	ment	
Find the static moment M (N·m). Find the allowable static moment Ma (N·m).	M = W x 9.8 (Ln + An)/1000 Moment center position distance compensation amount An: [BDE(2) Ma = K.?.Mmax Workpiece mounting coefficient K: [Fig.(3) Allowable moment coefficient ?: [Graph (2) Maximum allowable moment Mmax: [able (4)	Yawing Rolling Examine My. Examine Mr. My = 0.5 x 9.8 (10 + 11)/1000 = 0.11 Mr = 0.5 x 9.8 (30 + 17)/1000 = 0 A3 = 11 A6 = 17 May = 1 x 1 x 9.14 = 9.14 Mar = 9.14 (Same as May) Mymax = 9.14 K = 1 Y = 1 Y = 1
Find the load factor α_2 of the static moment.	Cl2 = M/Ma	$C_{2}^{\prime} = 0.11/9.14 = 0.012$ $C_{2}^{\prime} = 0.23/9.14 = 0.025$
Load factor of dynamic mon	nent	
Find the dynamic moment Me (N·m).	$\begin{split} & \text{Me} = 1/3 \cdot \text{We} \times 9.8 \frac{(\text{Ln} + \text{An})}{1000} \\ & \text{Collision equivalent to impact We} = \delta \cdot \text{W-V} \\ & \delta : \text{Bumper coefficient} \\ & \text{With urethane bumper (Standard)} = 4/100 \\ & \text{Corrected value for moment} \\ & \text{center position distance An: } \text{Fable(6)} \end{split}$	Pitching Examine Mep. Mep = 1/3 × 8.4 × 9.8 × $\frac{(30 + 17)}{1000}$ = 1.3 = 1/3 We = 4/100 × 0.5 × 420 = 8.4 = 4.2 A2 = 17 Meap = 1 × 0.7 × 9.14 = 6.40 K = 1 γ = 0.7 Mpmax = 9.14 = 9.14
Find the allowable dynamic moment Mea (N·m).	Mea = K-Ŷ-Mmax Workpiece mounting coefficient K: [Fig. (3) Allowable moment coefficient Ŷ: Graph (2) Max. allowable moment Mmax: Graph (4)	$\begin{aligned} & & \mathcal{O}_{3} = 1.3/6.40 = 0.20 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & &$
Find the load factor α_3 of the dynamic moment.	C(3 = Me/Mea	A4 = 34 Meay = 6.40 (Same value as Meap) (\(\delta = 1.8/6.4 = 0.28
Sum of the load factors		0.0 - 1.00.7 - 0.20
Use is possible if the sum of the	$\sum \alpha n = \alpha_1 + \alpha_2 + \alpha_3 \le 1$	$\sum \alpha n = \alpha_1 + \alpha_2 + \alpha_2' + \alpha_3 + \alpha_3'$

Model Selection **MXF** Series


Fig. (1) Load Mass: W (kg)

Static moment

the case of using perpendicularly in a vertical position.

Fig. (3) Workpiece Mounting Coefficient: K

Table (2) Maximum Allowable Load Mass: Wmax (kg)

Model	Maximum allowable load mass
MXF8	0.6
MXF12	1
MXF16	2
MXF20	4

Fig. (2) Overhang: Ln (mm), Correction Values for Moment Center Distance: An (mm) Yaw moment Pitch moment Roll moment

Note) Static moment: Moment generated by gravity Dynamic moment: Moment generated by impact when colliding with stopper

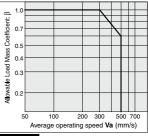
Table (1) Maximum Allowable Kinetic Energy: Emax (J)

	· JJ · (•)
Model	Allowable kinetic energy
woder	Rubber bumper
MXF8	0.027
MXF12	0.055
MXF16	0.11
MXF20	0.16

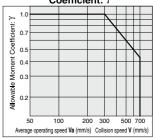
Table (3) Moment Center Position Distance Compensation Amount: An (mm)

	Moment center position distance compensation amount (Refer to Fig. (2).)											
Model	A 1	A2	Аз	A 4	A 5	A6						
MXF8	6 ^{Note)}	10	6 ^{Note)}	21	21	10						
MXF12	10	11	10	23	23	11						
MXF16	10	12	10	28	28	12						
MXF20	11	17	11	34	34	17						

Note) 16 mm for MXF8-10 only.

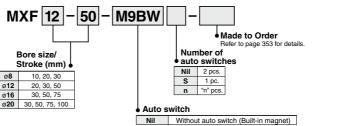

Table (4) Maximum Allowable Moment: Mmax (N·m)

Model	Stroke (mm)										
Model	10	20	30	50	75	100					
MXF8	0.56	0.78	0.78 0.98								
MXF12	1.65 2.22 3.34		3.34								
MXF16			3.41	5.69	7.96						
MXF20		6.66 9.14 13.70				18.27					


Symbol

Symbol	Definition	Unit	Symbol	Definition	Unit
An (n = 1 to 6)	Correction values of moment center position distance	mm	Va	Average operating speed	mm/s
E	Kinetic energy	J	w	Load mass	kg
Ea	Allowable kinetic energy	J	Wa	Allowable load mass	kg
Emax	Max. allowable kinetic energy	J	We	Mass equivalent to impact	kg
Ln (n = 1 to 3)	Overhang	mm	Wmax	Max. allowable load mass	kg
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	N⋅m	α	Load factor	
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	N⋅m	β	Allowable load mass coefficient	
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	N⋅m	γ	Allowable moment coefficient	
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	N⋅m	δ	Damper coeficient	
Mmax (Mpmax, Mymax, Mrmax)	Maximum allowable moment (pitch, yaw, roll)	N⋅m	к	Workpiece mounting coefficient	
V	Collision speed	mm/s			

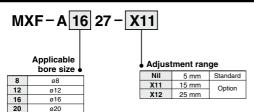
Graph (2) Allowable Moment Coefficient: Y



Note) Use the average operating speed when calculating static moment. Use the collision speed when calculating dynamic moment.

Low Profile Slide Table

How to Order



* For the applicable auto switch model, refer to the table below.

* Solid state auto switches marked with " " are produced upon receipt of order.

RoHS

How to Order Adjusting Bolt Assembly (Accessory)

* -X12 (adjustable range 25 mm) is not available in the MXF8/MXF12 series.

Applicable Auto Switches/Refer to pages 1289 to 1383 for the detailed specifications of auto switches.

			ight		L	oad volta	age	Auto swite	ch model	Lead	wire I	ength	n (m)						
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	DC		AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	Pre-wired connector	Applio loa				
£				3-wire (NPN)		5V.12V		M9NV	M9N	•	•	٠	0	0	IC circuit				
switch				3-wire (PNP)		50,120		M9PV	M9P	•	•	•	0	0	IC CITCUIL				
				2-wire		12V	1	M9BV	M9B	•	•	٠	0	0	-				
ę	Diagnostic indication (2 color indicator) Grom	2-color indicator)		3-wire (NPN)	51(10)(-		51/ 401/	5V.12V		M9NWV	M9NW	•	•	٠	0	0	IC circuit	Dalau
			Yes	3-wire (PNP)	24V	24V 5V,12V	× –	M9PWV	M9PW	•	•	۲	0	0		Relay, PLC			
state	(2-0001 110004001)			2-wire		12V		M9BWV	M9BW	•	•	۲	0	0	-				
				3-wire (NPN)		EV 10V	EV 10V	EV 10V	EV 10V	EV 10V	5V.12V		M9NAV*1	M9NA*1	0	0	٠	0	0
Solid	Water resistant (2-color indicator)			3-wire (PNP)		50,120		M9PAV*1	M9PA*1	0	0	۲	0	0	IC circuit				
Ň	(2-0001 110004001)			2-wire		12V	1	M9BAV*1	M9BA*1	0	0	٠	0	0	-				
Reed auto switch		0	Yes	3-wire (Equiv. to NPN)	—	5V	-	A96V	A96	•	-	•	-	_	IC circuit	_			
to s		Grommet		2-wire	24V	12V	100V	A93V*2	A93	•	•	۲	•	-	_	Relay,			
aut			None	∠-wire	24V	120	100V or less	A90V	A90		-	۲	-	_	IC circuit	PLC			

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

- 1 m ······ M (Example) M9NWM
- 3 m ······ L (Example) M9NWL

5 m ······ Z (Example) M9NWZ

* Since there are other applicable auto switches than listed, refer to page 361 for details.

* For details about auto switches with pre-wired connector, refer to pages 1358 and 1359.

* Auto switches are shipped together (not assembled).

Low Profile Slide Table **MXF** Series

Specifications

A la	

Symbol Rubber bumper

Bore size (mm)	8	12	16	20			
Piping port size	M3 x 0.5	M5 x 0.8					
Fluid	Air						
Action		Double	acting				
Operating pressure		0.15 to 0).7 MPa				
Proof pressure	1.05 MPa						
Ambient and fluid temperature	-10 to 60 °C						
Operating speed range (Average operating speed) Note)	50 to 500 mm/s						
Cushion		Rubber bumper	r on both sides				
Lubrication		Non-	lube				
Auto switch (Option)	Reed auto switch Solid state auto switch (2-wire, 3-wire) 2-color indicator solid state auto switch (2-wire, 3-wire)						
Stroke length tolerance	+1 mm						
Stroke adjustment range	Exten	sion end 5 mm/	Retraction end	5 mm			

Note) Average operating speed: Speed that the stroke is divided by a period of time from starting the operation to reaching the end.

	Theoretica	al Output		0	UT 🗲			_ →		(N)
	Bore size	Rod size	Operating	Piston area		Opera	ating pr	essure	(MPa)	
	(mm)	(mm)	direction	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7
	8	4	OUT	50	10	15	20	25	30	35
	Ū		IN	38	8	11	15	19	23	27
	12	6 OU	OUT	113	23	34	45	57	68	79
	12		IN	85	17	26	34	43	51	60
	16	8	OUT	201	40	60	80	101	121	141
	10	0	IN	151	30	45	60	76	91	106
	20	10	OUT	314	63	94	126	157	188	220
ıl	20	10	IN	236	47	71	94	118	142	165

Made to Order: Individual Specifications
(For details, refer to pages 362 and 363.)

Symbol	Specifications					
-X7 PTFE grease						
-X9	Grease for food processing machines					
-X11	X11 Adjusting bolt, long specification (Adjustment range: 15 mm)					
-X33	Without built-in auto switch magnet					
-X39	Fluororubber seal					
-X42 Anti-corrosive specifications for guide unit						

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Standard Stroke

Model	Standard stroke (mm)
MXF8	10, 20, 30
MXF12	20, 30, 50
MXF16	30, 50,7 5
MXF20	30, 50, 75, 100

Weiaht

Model		Standard stroke (mm)							
Woder	10	20	30	50	75	100			
MXF8	120	130	170	_	_	_			
MXF12	_	210	250	360	_	_			
MXF16	_	_	360	500	690	_			
MXF20	_	_	600	750	1060	1370			

Moisture Control Tube **IDK Series**

When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions. Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the Web Catalog.

(a)

Table Deflection (Reference Values)

Table displacement due to pitch moment load

MXF8

Table displacement amount (mm)

0.08

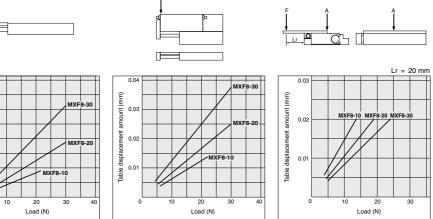
0.06

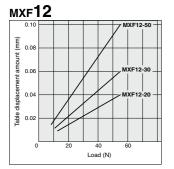
0.04

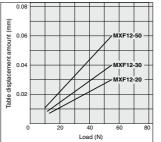
0.02

0

Table displacement when loads are applied to the section marked with the arrow at the full stroke.




Table displacement due to yaw moment load


Table displacement when loads are applied to the section marked with the arrow at the full stroke.

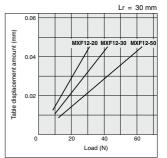
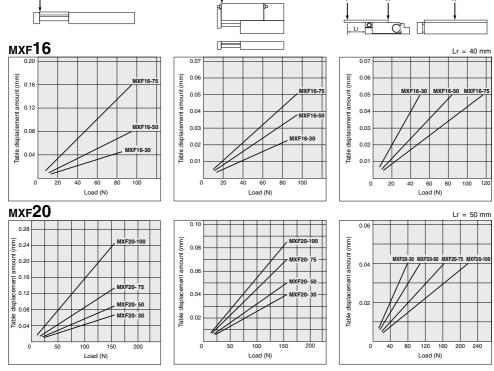

Table displacement due to roll moment load

Table displacement of section A when loads are applied to the section F with the slide table retracted.

Low Profile Slide Table **MXF** Series

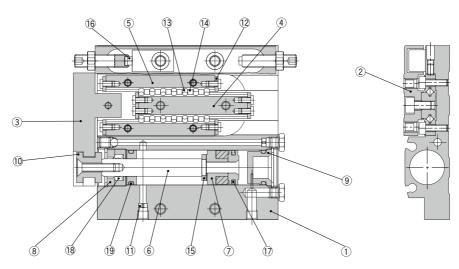
The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable mass. Refer to the Model Selection for the loadable mass.

Table displacement due to


Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow at the full

stroke.

Table displacement due to yaw moment load


Table displacement when loads are applied to the section marked with the arrow at the full stroke.

roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.

MXF Series

Construction

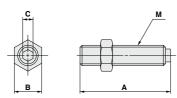
Component Parts

	1		
No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Table	Aluminum alloy	Hard anodized
3	End plate	Aluminum alloy	Hard anodized
4	Rail	Hardening steel	Heat treated
5	Guide	Hardening steel	Heat treated
6	Rod	Stainless steel	
7	Piston assembly	-	With magnet
8	Seal support	Brass	Electroless nickel plated
9	Head cap	Resin	
10	Floating bushing	Stainless steel	
11	Orifice	Brass	Electroless nickel plated
12	Roller stopper	Stainless steel	
13	Cylindrical roller	High carbon chrome bearing steel	
14	Roller spacer	Resin	
15	Rod bumper	Polyurethane	

Component Parts

No.	Description	Description Material	
16	Adjust bumper	Polyurethane	
17	Piston seal	NBR	
18	Rod seal	NBR	
19	O-ring	NBR	

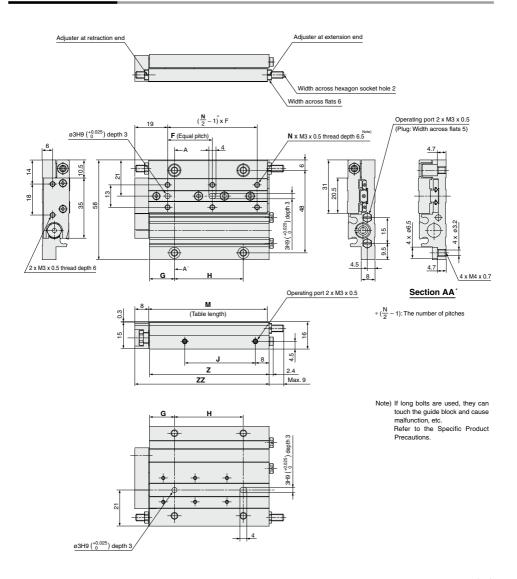
Replacement Parts: Seal Kit


Bore size (mm)	Kit no.	Contents		
8	MXF8-PS			
12	MXF12-PS	Set of nos. above 🕅 to 19		
16	MXF16-PS	Set of nos. above (1) to (19		
20	MXF20-PS			

* Seal kit includes (1), (18, (19. Order the seal kit, based on each bore size.

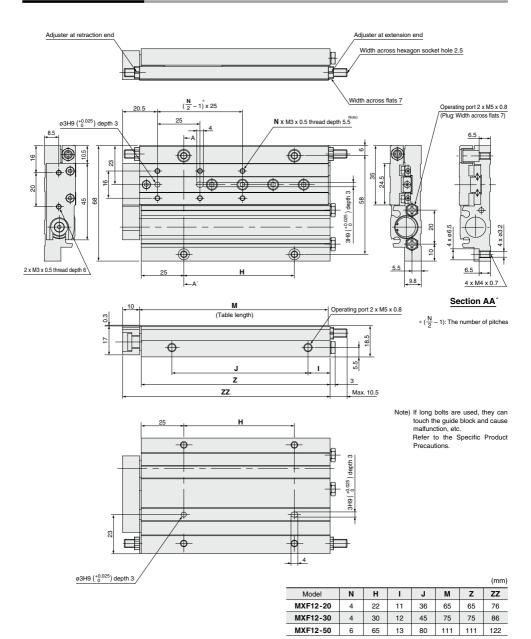
Replacement Part: Grease Pack

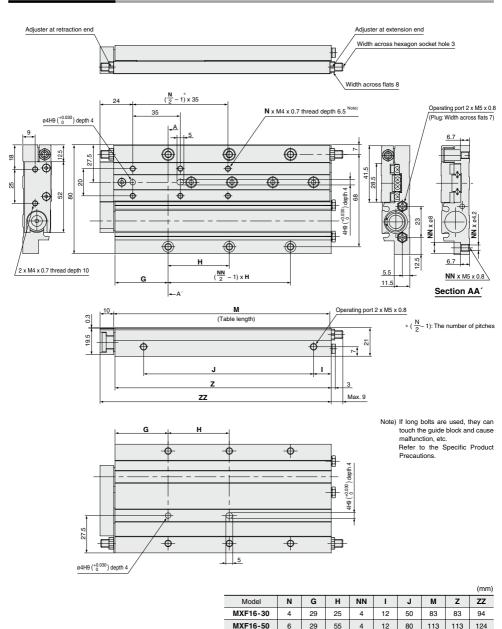
Applied part	Grease pack part no.
Guide	GR-S-010 (10g) GR-S-020 (20g)
Cylinder	GR-L-005 (5g) GR-L-010 (10g)


Dimensions: Adjusting Bolt Assembly

Applicable size	Model	Stroke adjustment range (mm)	A	в	с	м
MXF8	MXF-A827	5	17	6	2	M4 x 0.7
WIXI 0	MXF-A827-X11	15	27			WI4 X 0.7
MXF12	MXF-A1227	5	23.5	7	2.5	M5 x 0.8
WAF 12	MXF-A1227-X11	15	33.5			
	MXF-A1627	5	26.5		3	M6 x 1
MXF16	MXF-A1627-X11	15	36.5	8		
	MXF-A1627-X12	25	46.5			
MXF20	MXF-A2027	5	30			
	MXF-A2027-X11	15	40	12	4	M8 x 1
	MXF-A2027-X12	25	50			

SMC

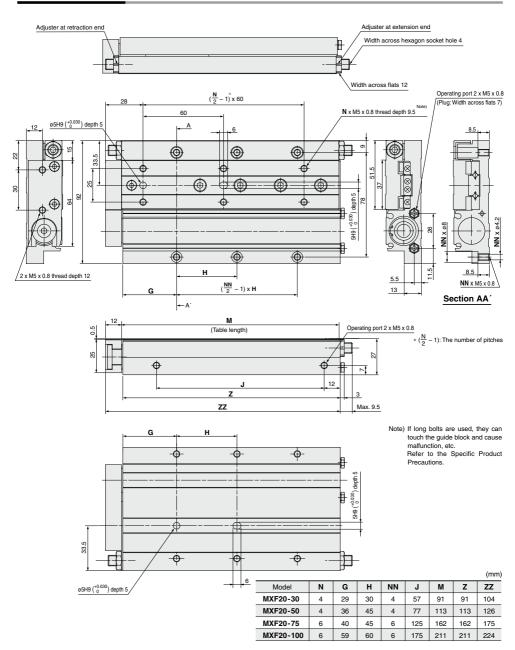

Dimensions: MXF8


								(mm)
Model	F	Ν	G	н	J	М	Z	ZZ
MXF8-10	20	4	13.5	22	21	49	49.5	58
MXF8-20	26	4	14.5	26	26	54	54.5	63
MXF8-30	26	6	14.5	40	41	69	69.5	78

MXF Series

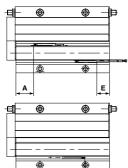
Dimensions: MXF 12

Dimensions: MXF16


	CI	
Ð	3	VIC

MXF16-75

6 39 45 6 13 125 159 159 170


MXF Series

Dimensions: MXF20

MXF Series **Auto Switch Mounting**

Auto Switch Proper Mounting Position (Detection at Stroke End)

Reed Auto Switch: D-A90, D-A93, D-A96, D-A90V, D-A93V, D-A96V (mm)

		В						E					
Model	A			Stro	ke			Stroke					
		10	20	30	50	75	100	10	20	30	50	75	100
MXF8	9.5	10	5	10	—	—	—	8 (5.5)	3 (0.5)	8 (5.5)	—	—	_
MXF12	12	_	13.1	13.1	29.1	—	—	_	11.1 (8.6)	11.1 (8.6)	27.1 (24.6)	—	_
MXF16	17.2	_	_	15.8	25.8	46.8	—	_	_	13.8 (11.3)	23.8 (21.3)	44.8 (42.3)	_
MXF20	19.4	_	_	20.7	22.7	46.2	70.7	_	_	18.7 (16.2)	20.7 (18.2)	44.2 (41.7)	68.7 (66.2)

Solid State Auto Switch: D-M9B, D-M9N, D-M9P, D-M9BW, D-M9NW, D-M9PW, D-M9DA (mm)

				E	3					E	Ξ.				E	E (D-N	/9⊐A	l)	
Model	A			Str	oke					Str	oke					Str	oke		
		10	20	30	50	75	100	10	20	30	50	75	100	10	20	30	50	75	100
MXF8	13.5	14	9	14	_	_	_	4	-1	4	—	—	—	2	-3	2	—	—	—
MXF12	16	-	17.1	17.1	33.1	_	—	—	7.1	7.1	23.1	—	—	—	5.1	5.1	21.1	—	—
MXF16	21.2	-	—	19.8	29.8	50.8	_	_	_	9.8	19.8	40.8	—	-	—	7.8	17.8	38.8	—
MXF20	23.4	-	—	24.7	26.7	50.2	74.7	_	_	14.7	16.7	40.2	64.7	-	—	12.7	14.7	38.2	62.7

Solid State Auto Switch: D-M9BV, D-M9NV, D-M9PV, D-M9BWV, D-M9NWV, D-M9PWV, D-M9DAV (mm)

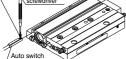
				E	3					E					E	(D-M	9□A'	V)	
Model	A			Str	oke					Str	oke					Str	oke		
		10	20	30	50	75	100	10	20	30	50	75	100	10	20	30	50	75	100
MXF8	13.5	14	9	14	_	-	_	6	1	6	_	_	_	4	-1	4	_	-	—
MXF12	16	_	17.1	17.1	33.1	-	_	_	9.1	9.1	25.1	_	_	_	7.1	7.1	23.1	-	—
MXF16	21.2		—	19.8	29.8	50.8	Ι	I	I	11.8	21.8	42.3	—	Ι	—	9.8	19.8	40.3	—
MXF20	23.4	_	_	24.7	26.7	50.2	74.7	-	-	16.7	18.7	42.2	66.7	_	_	14.7	16.7	40.2	64.7

* (): Denotes the values of D-A93.

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

Caution Auto Switch Mounting Tool with auto switch), use a watchmaker's screwdriver with a handle about 5 to 6 mm in diameter.


Tightening Torque

в

Tightening Torgue of Auto Switch Mounting Screw (N-m)

J J	· · · · · J · · · (· · · ·)
Auto switch model	Tightening torque
D-A9□(V)	0.10 to 0.20
D-M9□(V)	0.05 to 0.15
D-M9⊟W(V)	0.05 10 0.15
D-M9□A(V)	0.05 to 0.10

Operating Range

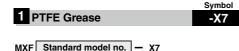
Auto switch model	Applicable bore size (mm)							
Auto switch model	8	12	16	20				
D-A9□(V)	4.5	5	6	7				
D-M9□, M9□V								
D-M9□W, M9□WV	3	3	4.5	5				
D-M9□A, M9□AV								

* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately ±30% dispersion). It may vary substantially depending on an ambient environment.

Other than the models listed in "How to Order", the following auto switches are applicable.

* Normally closed (NC = b contact) solid state auto switches (D-M9□E(V)) and solid state auto switch D-F8 are also available.

For details, refer to pages 1307 and 1308.


н

I.

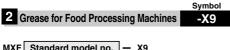
MXF series Made to Order: Individual Specifications 1

Please contact SMC for detailed dimensions, specifications and lead times.

PTFE grease

PTFE grease is used for all parts that grease is applied.

Specifications


Туре	PTFE grease
Bore size (mm)	8, 12, 16, 20

* Dimensions other than the above is the same as the standard type.

A Warning

Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

MXF Standard model no. - X9 • Grease for food processing machines

Grease for food processing machines is used for all parts that grease is applied.

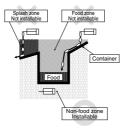
Specifications

Туре	Grease for food processing machines (NSF-H1 certified)/Aluminum complex soap base grease
Bore size (mm)	8, 12, 16, 20

* Dimensions other than the above is the same as the standard type.

≜ Caution

Do not use in a food contact environment.
Do not use in a liquid splash environment, e.g. water, detergent, liquid chemicals.


<Not installable>

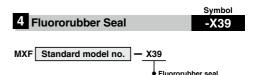
Food zone An environment where food which will be sold as merchandise directly touches the cylinder's components Splash zone

An environment where food which will not be sold as merchandise directly touches the cylinder's components <Installable>

Non-food zone

An environment where there is no contact with food

MXF Standard model no. - X33

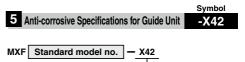

Without built-in auto switch magnet

Auto switch magnet is not built in.

Specifications

Туре	Without built-in auto switch magnet
Bore size (mm)	8, 12, 16, 20
Auto switch	Not mountable

* Dimensions other than the above is the same as the standard type.



Change the materials for the piston seal, rod seal and O-rings to fluororubber.

Specifications

Туре	Fluororubber seal
Bore size (mm)	8, 12, 16, 20
Seal material	Fluororubber

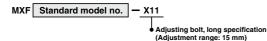
* Dimensions other than the above is the same as the standard type.

 Anti-corrosive specifications for guide unit

Rail and guide are given anti-corrosive treatment.

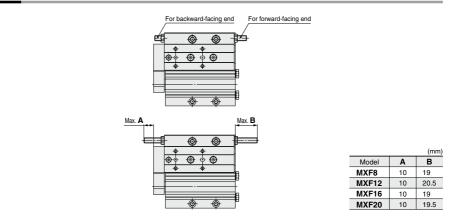
Specifications

Туре	Anti-corrosive guide unit
Bore size (mm)	8, 12, 16, 20
Surface treatment	Special anti-corrosive treatment (2)


* 1 Dimensions other than the above is the same as the standard type.

* 2 Special anti-corrosive treatment makes the rail and the guide black.

MXF Series Made to Order: Individual Specifications 2


6 Adjusting Bolt, Long Specification (Adjustment range: 15 mm)

The average adjusting stroke range was extended from 5 mm to 15 mm with a long adjusting bolt.

Dimensions

MXF Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 8 for safety instructions and pages 9 to 18 for actuator and auto switch precautions.

Selection

A Caution

1.Operate a load within the range of the operating limits.

Select the model considering maximum loading mass and allowable moment. For details, refer to "Model Selection" on pages 350 and 351. When actuator is used outside of operating limits, eccentric loads on guide will be in excess of this causing vibration on guide, inaccuracy, and shortened life.

2. If intermediate stops by external stopper is done, avoid ejection.

If lurching occurs, damage can result. When making an intermediate stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.

3. Do not use it in such a way that excessive external force or impact force could work on it.

This could result in damage.

A Caution

1.Do not scratch or dent the mounting side of the body, table or end plate.

The damage will result in a decrease in parallelism, vibration of the guide or an increase in moving part resistance.

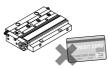
Do not scratch or dent on the forward side of the rail or guide.

This could result in looseness, increased operating resistance, etc.

3. Do not apply excessive power and load when work is mounted.

If the external force more than the allowable moment were applied, looseness of the guide unit or increased operating resistance could take place.

4. Flatness of mounting surface should be 0.02 mm or less.


Poor parallelism of the workpiece mounted on the body, the base, and other parts can cause vibration in the guide unit and increased operating resistance, etc.

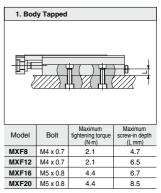
- Select the proper connection with the load which has external support and/or guide mechanism on the outside, and align it properly.
- Avoid contact with the body during operation.

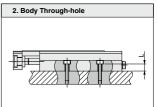
Hands, etc. may get caught in the stroke adjuster. Install a cover as a safety measure if there are instances to be near the slide table during operation.

7.Keep away from objects which are influenced by magnets.

Since an body has magnets built-in, do not allow close contact with magnetic disks, magnetic cards or magnetic tapes. Data may be erased.

Mounting


8. When mounting the body, use screws of an appropriate length and do not exceed the maximum tightening torque.


Tightening with a torque above the limit could cause malfunction. Whereas tightening insufficiently could result in misalignment or dropping.

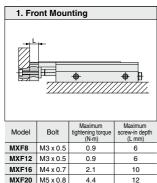
9. Be careful when adjusting stroke not to allow cylinder end plate to bottom out against cylinder body.

Mounting of Body

The slide table can be mounted from 2 directions. Select the best direction according to your application.

Model	Bolt	Maximum tightening torque (N·m)	Maximum screw-in depth (L mm)
MXF8	M3 x 0.5	1.2	4.7
MXF12	M3 x 0.5	1.2	6.5
MXF16	M4 x 0.7	2.8	6.7
MXF20	M4 x 0.7	2.8	8.5

MXF Series Specific Product Precautions 2


Be sure to read this before handling the products. Refer to page 8 for safety instructions and pages 9 to 18 for actuator and auto switch precautions.

Mounting

ACaution

Mounting of Workpiece

Work can be mounted on two sides of the body.

		(N·m)	[(Lmm)
MXF8	M3 x 0.5	0.9	6.5
MXF12	M3 x 0.5	0.9	5.5
MXF16	M4 x 0.7	2.1	6.5
MXF20	M5 x 0.8	4.4	9.5

▲ Caution

To prevent the workpiece holding bolts from touching the guide holding bolts, use bolts that are 0.5 mm or more shorter than the maximum screw-in depth.

If the bolts are too long, they hit the end plate and may cause malfunctions.

▲ Caution

 The positioning hole on the table and on the bottom of the body does not have the same center. Positioning hole is meant to be for reproducibility for mounting and dismounting.

Operating Environment

A Caution

1. Do not use in an environment, where the product could be exposed to liquids such as cutting oil, etc.

Using in an environment where the product could be exposed to cutting oil, coolant, oil, etc. could result in looseness, increased operating resistance, air leakage, etc.

2. Do not use in an environment, where the product could be exposed directly to foreign materials such as powder dust, blown dust, cutting chips, spatter, etc.

This could result in looseness and increased operating resistance, and air leakage, etc.

- 3. Do not use in direct sunlight.
- 4. When there are heat sources in the surrounding area, block them off.

When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.

5. Do not subject it to excessive vibration and/or impact.

This can cause damage or a malfunction.

Other

A Warning

1. Do not put hands or fingers between the end plate and body.

Never put hands or fingers in the gap between the end plate and body when retracted. Doing so will result in injury to the hands, or fingers.

2.Be aware that smoking cigarettes, etc., after your hands have come into contact with the grease used in the cylinder section of this product can create a gas that is hazardous to humans.

A Caution

- 1. Do not disassemble or modify the product.
- 2. Performance stability

The piston speed in the specification table shows the average speed. The actual speed of this product may vary slightly during the stroke depending on the operating conditions, such as the change of load resistance and pressure.

